Contract as Automaton
The Computational Representation of Financial Agreements

Mark D. Flood (OFR)
and
Oliver R. Goodenough (Vermont Law School and OFR)

Consortium for Systemic Risk
Semiannual Meeting
Cambridge, MA – 15 Dec 2014

Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research.
Views and opinions expressed are those of the speaker(s) and do not necessarily represent official OFR positions or policy.

Additional debt to others in Computational Law

- Dan Katz at Michigan State U.
- Jeanne Eicks at Vermont Law School
- Berkman Center at Harvard
- Kauffman Foundation
- Gruter Institute

Thanks to research support and collaborators at OFR

- Matt Reed
- David Blaszkowsky (now at State Street)
- Interns: John Donnelly, Jaryn Fields, Catherine Bourque
Measuring Financial Contracts

- Instruments
- Legal Entities
- Relationships
- Positions & Portfolios
- Messages
- Transactions
Computational Contracts

• Key insights
 – Financial contracts are central to understanding the financial system
 – Financial agreements aid coordination by alleviating “social uncertainty”
 – Formal modeling of structure makes it accessible to programmatic analysis
 – Financial contracts are structured internally as state-transition systems

• Proof of concept
 – A single, simple loan agreement, stated in traditional legalese
 – Underlying structure of that agreement as a discrete finite automaton (DFA)
 – Three (interchangeable) representations of the structure:
 • Graphical
 • Tabular
 • Regular expression
 – Discretization and finiteness are crucial to managing complexity
A “Toy” Loan Agreement

Simple two-page loan contract

1. The Loan: $1000, June 1, 2014
2. Repayment:
 • Payment 1, due June 1, 2015: $550
 • Payment 2, due June 1, 2016: $525
3. Representations and Warranties
4. Covenants
5. Events of Default:
 • Borrower fails to make timely payment
 • Reps or warranties prove untrue
 • Borrower fails any covenants
 • Borrower files for bankruptcy
6. Acceleration on Default
7. Choice of Law
8. Amendments and Waivers
9. Courts and Litigation
10. Time of the Essence; No Pre-Payment
11. Notices
• A deterministic finite automaton (DFA) is defined by a 5-tuple:
 – Finite set of states \((Q)\)
 – Finite set of input symbols (information/events) called the alphabet \((\Sigma)\)
 – Transition function \((\delta : Q \times \Sigma \rightarrow Q)\)
 – Start state \((q_0 \in Q)\)
 – Set of accept (end) states \((F \subseteq Q)\)

• Three representations (at least):
 – Graphical (depiction of states and transitions among them)
 – Lists (of \(Q\), \(\Sigma\) and \(\delta\))
 – Regular expression (shorthand grammar of acceptable event sequences)
DFA as a chain of event and consequence:

- Start state \(q_0 \) at the top
- Terminal states (3) at bottom
- “Happy” or intended path traced in green
- More “interesting” ramifications traced in black
From the state [Pmt 1 accruing], four transitions are possible:

- Three types of default:
 - Reps/warranties
 - Covenant
 - Bankruptcy
- Due date for first payment arrives <June 1, 2015 passes>
Representation II: Tabular

State Space (27)

- **Q**

Event Alphabet (20)

- **Σ**

Transitions (45)

- **δ**

Table:

<table>
<thead>
<tr>
<th>ID</th>
<th>Label</th>
<th>Natural language event specification</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Contract signed</td>
<td>contract is signed in 3rd party title</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1 day passed since last event</td>
<td>June 1, 2014 passed</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>Money requested</td>
<td>Borrower given request for loan of $1,000</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Loan set</td>
<td>A legal action is brought to enforce, interpret or otherwise deal with the agreement in the state courts of the state of New York located in New York county.</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>Notice of limitations</td>
<td>Notice of limitations on debt obligations in New York state is a court that has jurisdiction over the matter due to the amount of $1,000.</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>Principal advanced</td>
<td>Lender advances $1,000 no later than June 7, 2016.</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>June 1, 2016 advanced</td>
<td>Payment 1 due by June 1, 2016</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>Repayment</td>
<td>The borrower's rights to participate in a bankruptcy proceeding under applicable federal or state law</td>
<td>5</td>
</tr>
<tr>
<td>I</td>
<td>Covenant</td>
<td>The borrower's rights to participate in a bankruptcy proceeding under applicable federal or state law</td>
<td>5</td>
</tr>
<tr>
<td>J</td>
<td>Bankruptcy</td>
<td>The borrower's rights to participate in a bankruptcy proceeding under applicable federal or state law</td>
<td>6</td>
</tr>
<tr>
<td>K</td>
<td>Notice given</td>
<td>Notice given to borrower of a failure to make timely payment of an amount due to lender under the agreement</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>Notice given of general default</td>
<td>Notice given to borrower of a failure to make timely payment of an amount due to lender under the agreement</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>Payment default cured</td>
<td>A payment-related event of default is cured</td>
<td>5</td>
</tr>
<tr>
<td>N</td>
<td>General default cured</td>
<td>A non-payment-related event of default is cured</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td>2 Days pass since last event</td>
<td>Two days have passed since last event occurrence</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>June 1, 2016 passed</td>
<td>Payment 2 is due on June 1, 2016</td>
<td>5</td>
</tr>
<tr>
<td>Q</td>
<td>Payment made late</td>
<td>Payment made late</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>Payment made late</td>
<td>Payment made late</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>Payment made late</td>
<td>Payment made late</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>Contract or modify</td>
<td>Contract in the form is canceled because of modification or termination by mutual agreement of the parties</td>
<td>5</td>
</tr>
</tbody>
</table>

Image Source: OFR analysis

Office of Financial Research

Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research.
Representation III: Regular Expression

\[A(B | CB[ED]) | \]

\[ACF(G(BK) ?)QPR | \]

\[ACF([HIJ]LN) *(GBK| [HIJ]L)O(S | B[DES]) | \]

\[ACF(G(BK) ?)Q([HIJ]LN) *(PBK| [HIJ]L)O(R | B[RED]) \]

Rapid demise

Happy path

Unhappy 1

Unhappy 2
Full Transition Matrix

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
start	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
P2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
P3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research.
Implications – Complexity

• **Basic Results on Complexity**
 – DFAs enforce the Markov (or Myhill-Nerode) property – *state is “memoryless”*
 • The DFA “lives in the moment” – all transitions are one-step-ahead actions
 – Computational complexity is manageable:
 • Constrained by the Myhill-Nerode condition
 • Measurable by the descriptional complexity of the regular expression
 – The law appears to have evolved this constraint organically
 • Sorcerer’s Apprentice problem

• **Assessing Complexity**
 – The complexity of actual contracts is (in theory) rigorously measurable
 – The computational “inefficiency” of a contract is measurable:
 • Measure the contract’s actual complexity, C
 • Reduce the contract’s DFA to its theoretical minimum and measure that complexity, C^*
 • The difference, $\Delta C = (C-C^*)$, is a measure of “unnecessary” complexity
Next Steps - Modeling

• **Nondeterministic Finite Automata (NFAs)**
 – Standard extension of DFAs
 – Identical expressiveness, but:
 • Additional flexibility in representation
 • Therefore typically more compact

• **Transducers**
 – Extend the DFA representation to emit events
 • For example, cross-default clauses
 – Contracts that listen to other contracts
 – Systemic implications
 – Two standard cases:
 • Moore machine – Transition output event *cannot* depend on triggering input event
 • Mealy machine – Transition output event *can* depend on triggering input event
Next Steps - Empirical

- **Real Contracts**
 - International Swap Dealers Association (ISDA) – OTC swaps
 - International Foreign Exchange Master Agreement (IFEMA) – Spot FX
 - Standardizing contingency clauses
 - Work is underway on ISDA master agreements

- **Event measurement**
 - Principles for defining measurable events to support DFA representations
 - Tools for feature extraction
 - Contractual completeness (relative to the event space)
 - Contractual coherence (relative to the event space)
Thanks!